
topics
natural language 2 Pl1

Pl1 2 Prolog

Tutorium to Introduction to AI, 5th week -
Nicolas Höning

Nicolas Höning

May 5, 2006

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

natural language 2 Pl1
motivation
examples

Pl1 2 Prolog
PL1 vs Prolog
the algorithm

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

motivation
examples

motivation

I It’s all about two things: translating natural language to Pl1
and Pl1 to Prolog (we’ll see about that later).

I Pl1 stands for ”predicate Logic 1”, which is first order logic.
Prolog can handle everything that can be expressed in Pl1.
If we would translate a problem, given in human language, to
Prolog, we first would translate it to Pl1.

I So this is all about translation, or communication between
real life and AI.
But I know, it seems to be a lot of dry theory and work.

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

motivation
examples

example 1

I I’ll also translate the examples to the style you need for the
homework

I ”if someone has blond hair, he/she is british”

I ∀x : has blond hair(x)→ british(x)

I all x: has blond hair(x) − > british(x)

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

motivation
examples

example 2

I ”no elephant is blue”

I ∀x : elephant(x)→ ¬blue(x)

I all x: elephant(x) − > not blue(x)

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

motivation
examples

example 3

I ”there is exactly one Rudi Voeller”

I ∃x : rudivoeller(x) ∧ ∀y : rudivoeller(y)→ x = y

I ex x: rudivoeller(x) and all y: rudivoeller(y) − > x=y

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

motivation
examples

what is clark completion?

I the homework uses the term ”clark completion”. I never heard
it myself.

I it basically means: ”a iff b” translates to a↔ b which is
a→ b, a← b
that leads to an infinite loop. you can leave away one
direction in this homework and say that the other direction is
done by clark completion...

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

Pl1 vs Prolog

I Let’s first compare them again. We need to get rid of what
we can’t say and transform what we can say:

I

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

I Here is my example: ”In every soccer season, there is at least
one really amazing game so that no fan is unhappy.” Pl1,
anyone?

I ∀x : soccerseason(x)∧
∃y : ((soccergame(y) ∧ amazing(y))→
¬∃x : (fan(x) ∧ ¬happy(x)))

I Basically, we want to do two things: get rid of quantifiers that
we do not have in Prolog (see last slide) and then transform it
into Conjunctive Normal Form, which easily can be translated
into Prolog.
we’ll go through these steps:

I variable renaming
I moving quantifiers out (Prenex form)
I Eliminating existential quantifiers (skolemization)
I Conjunctive Normal Form
I Prolog

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

variable renaming

I In logic, you can -by using it in the scope of another
quantifier- introduce a variable that has the same name as
some other that already occured. Of course, we don’t want
that in our Prolog program (we won’t have quantifiers later
on)!

I ∀x : soccerseason(x)∧
∃y : ((soccergame(y) ∧ amazing(y))→
¬∃z : (fan(z) ∧ ¬happy(z))

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

moving quantifiers out (Prenex form)

I We want all quantifiers to be on the left. We can move them
all to the left, now that all variable names are unique. But
first, negated quantifiers need to be made into positive ones.
This is pretty intuitive if you think about it:

I ¬∀a : f (a) ≡ ∃a : ¬f (a)

I ¬∃a : f (a) ≡ ∀a : ¬f (a)

I ∀x : soccerseason(x)∧
∃y : ((soccergame(y) ∧ amazing(y))→
∀z : ¬(fan(z) ∧ ¬happy(z))

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

moving quantifiers out (Prenex form)

I now they all can go to the left (keeping the order):

I ∀x : ∃y : ∀z : soccerseason(x)∧
((soccergame(y) ∧ amazing(y))→
¬(fan(z) ∧ ¬happy(z))

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

Eliminating existential quantifiers (skolemization)

I In Prolog, it’s a convention that every variable is universally
quantified. That’s how we get rid of universal quantifiers -
ignore them.
But what about existential quantifiers? They get
”skolemized”. We say that all the possibly occuring instances
are a function of the universally quantified variables that have
greater scope (their quantifier is left to the existential).
Let’s call that function sk(). For all x, there are some y that fit
them (soccergames y in that season x). sk() computes them.

I ∀x : ∀z : soccerseason(x)∧
((soccergame(sk(x)) ∧ amazing(sk(x)))→
¬(fan(z) ∧ ¬happy(z))

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

Eliminating existential quantifiers (skolemization)

I Now we can ignore all quantifiers - finally

I soccerseason(x)∧
((soccergame(sk(x)) ∧ amazing(sk(x)))→
¬(fan(z) ∧ ¬happy(z))

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

Conjunctive Normal Form

I The CNF is a conjunction of disjunctions, for example
(a ∨ b) ∧ (c ∨ d)

I we can use the rules logic gives us:

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

Conjunctive Normal Form

I first, let’s eliminate the implication

I soccerseason(x)∧
(¬(soccergame(sk(x)) ∧ amazing(sk(x)))∨
¬(fan(z) ∧ ¬happy(z))

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

Conjunctive Normal Form

I now we need to move negation inside (applying De Morgan’s
laws)

I soccerseason(x)∧
((¬soccergame(sk(x)) ∨ ¬amazing(sk(x)))∨
(¬fan(z) ∨ happy(z))

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

Conjunctive Normal Form

I for machine readability, we can transform it into this form:

I {{soccerseason(x)},
{¬soccergame(sk(x)),¬amazing(sk(x)),¬fan(z), happy(z)}}

I the embedding level determines the logical operator:
first level: ∧, second level: ∨

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning



topics
natural language 2 Pl1

Pl1 2 Prolog

PL1 vs Prolog
the algorithm

Prolog

I We can turn this into Prolog, if every first-level (conjuncted)
term contains at least one positive literal.
Luckily, we can do it here. If not, the problem might be
reformulated. For example, if we formulated ¬ happy(z) as
unhappy(z), this example could not be translated to Prolog.

I Terms with only one literal become facts. The others can be
formulated as implications:

I soccerseason(x).
happy(z) : −soccergame(sk(x)), amazing(sk(x)), fan(z).

Nicolas Höning Tutorium to Introduction to AI, 5th week - Nicolas Höning


	topics
	natural language 2 Pl1
	motivation
	examples

	Pl1 2 Prolog
	PL1 vs Prolog
	the algorithm


